Задачи ОГЭ
- 1. Практическая задача I
- 2. Практическая задача II
- 3. Практическая задача III
- 4. Практическая задача IV
- 5. Практическая задача V
- 6. Вычисления
- 7. Координатная прямая. Числовые неравенства
- 8. Действительные числа. Степени. Сравнения
- 9. Уравнения
- 10. Теория вероятностей
- 11. Функции и графики
- 12. Расчеты по формулам
- 13. Неравенства
- 14. Прогрессии
- 15. Треугольники
- 16. Окружности
- 17. Четырехугольники и многоугольники
- 18. Фигуры на квадратной решетке
- 19. Анализ геометрических утверждений
- 20. Уравнения, выражения, неравенства
- 21. Сложные текстовые задачи
- 22. Построение графиков
- 23. Геометрические задачи на вычисление
- 24. Геометрические задачи на доказательство
- 25. Сложные геометрические задачи
25. Сложные геометрические задачи (Задачи ОГЭ)
Середина M стороны AD выпуклого четырёхугольника равноудалена от всех его вершин. Найдите AD, если BC=14, а углы B и C четырёхугольника равны соответственно 110° и 100°.
В выпуклом четырехугольнике \(ABCD\) диагональ \(AC\) является биссектрисой угла \(BAD\) и пересекается с диагональю \(BD \) в точке \(S\). Найдите \(AS\), если известно, что около четырехугольника \(ABCD\) можно описать окружность, \(BC=12\), \(SC=9\).
Дан треугольник \(ABC\), высоты \(AA_1\), \(BB_1\) и \(CC_1\) которого относятся как 6:4:3. Найдите длину меньшей стороны треугольника \(ABC\), если его периметр равен 99.
Биссекстриса CM треугольника ABC делит его сторону AB на отрезки AM=4 и MB=9. Касательная к окружности, описанной около треугольника ABC, проходит через точку C и пересекает прямую AB в точке D. Найдите CD.
На стороне \(BC\) остроугольного треугольника \(ABC\) (\(AB ≠ AC\)) как на диаметре построена полуокружность, пересекающая высоту \(AD\) в точке \(M\), \(AD = 90\), \(MD = 69\), \(H\) - точка пересечения высот треугольника \(ABC\). Найдите \(AH\).
В равнобедренную трапецию, периметр которой равен 40, а площадь равна 80, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
В равнобедренную трапецию, периметр которой равен 200, а площадь равна 1500, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Боковые стороны AB иCD трапеции ABCD равны соответственно 10 и 26, а основание BC равна 1. Биссектрисса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Основание AC равнобедренного треугольника ABC равно 12.Окружность радиусом 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания AC. Найдите радиус окружности, вписанной в треугольник ABC.
Основание \(AC\) равнобедренного треугольника \(ABC\) равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжений боковых сторон треугольника и касается основания \(AC\). Найдите радиус окружности, вписанной в треугольник \(ABC\).