Сайт подготовки к экзаменам Uchus.online

Задачи ЕГЭ профиль

14. Стереометрия (Задачи ЕГЭ профиль)

В правильной четырёхугольной призме ABCDA₁B₁C₁D₁ сторона основания равна 13, а боковое ребро АА₁=6. Точка К принадлежит ребру В₁С₁ и делит его в отношении 4:9, считая от вершины В₁.
а) Постройте сечение этой призмы плоскостью, проходящей через точки В, D и К.
​б) Найдите площадь этого сечения.

В пирамиде \(ABCD\) ребра \(DA\), \(DB\) и \(DC\) попарно перпендикулярны, а \(AB=BC=AC=6\sqrt2\).
а) Докажите, что эта пирамида правильная.
б) На ребрах \(DA\) и \(DC\) отмечены точки \(M\) и \(N\) соответственно, причем \(DM:MA=DN:NC=2:1\). Найдите площадь сечения \(MNB\).

В пирамиде \(ABCD\) ребра \(DA\), \(DB\) и \(DC\) попарно перпендикулярны, а \(AB=BC=AC=14\).
а) Докажите, что эта пирамида правильная.
б) На ребрах \(DA\) и \(DC\) отмечены точки \(M\) и \(N\) соответственно, причем \(DM:MA=DN:NC=6:1\). Найдите площадь сечения \(MNB\).

Дан куб ABCDA₁B₁C₁D₁
а) Постройте сечение куба плоскостью, проходящей через точки B, A₁ и D₁
б) Найдите угол между плоскостями BA₁C₁ и BA₁D₁

В пирамиде \(ABCD\) ребра \(DA\), \(DB\) и \(DC\) попарно перпендикулярны, а \(AB=BC=AC=7\sqrt2\).
а) Докажите, что эта пирамида правильная.
б) На ребрах \(DA\) и \(DC\) отмечены точки \(M\) и \(N\) соответственно, причем \(DM:MA=DN:NC=4:3\). Найдите площадь сечения \(MNB\).

Дана правильная четырехугольная призма \(ABCDA_1B_1C_1D_1\). На ребре \(AA_1\) отмечена точка \(K\) так, что \(AK:KA_1=1:3\). Плоскость \(\alpha\) проходит через точки \(B\), \(K\) параллельно прямой \(AC\). Эта плоскость пересекает ребро \(DD_1\) в точке \(M\).

а) Докажите, что M – середина ребра \(DD_1\).

б) Найдите площадь сечения призмы плоскостью \(\alpha\), если \(AB=5\), \(AA_1=4\).

В правильной треугольной пирамиде \(DABC\) со стороной основания \(AB\), равной 30, боковое ребро равно 20. Точки \(N\) и \(M\) делят рёбра \(DA\) и \(DB\) в отношении \(2:1\), считая от вершины \(D\). Плоскость \(\alpha\), содержащая прямую \(MN\), перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость \(\alpha\) делит высоту \(CE\) основания в отношении \(8:1\), считая от точки \(C\).

б) Найдите площадь сечения пирамиды \(DABC\) плоскостью \(\alpha\).

Дана пирамида \(SABC\), в которой \(SC=SB=AB=AC=\sqrt{17}\), \(SA=BC=2\sqrt5\).
а) Докажите, что ребро \(SA\) перпендикулярно ребру \(BC\).
б) Найдите квадрат расстояния между ребрами \(BC\) и \(SA\).

Все рёбра правильной треугольной призмы \(ABCA_1B_1C_1\)имеют длину 6. Точки \(M\) и \(N\) - середины рёбер \(AA_1\) и \(A_1C_1\) соответственно.
а) Докажите, что прямые \(BM\) и \(MN\) перпендикулярны.
б) Найдите угол между плоскостями \(BMN\) и \(ABB_{1}\).

Ребро SA пирамиды SABC перпендикулярно плоскости основания ABC.
а) Докажите, что плоскость, проходящая через середины рёбер AB, AC и SA, отсекает от пирамиды SABC пирамиду, объём которой в 8 раз меньше объёма пирамиды SABC.
б) Найдите расстояние от вершины A до этой плоскости, если SA=2√5, AB=AC=10, BC=4√5.

Загрузка...
ВИДЕОКУРС по задаче 13 ЕГЭ:
Открыть
Загрузка...